投稿指南
一、来稿必须是作者独立取得的原创性学术研究成果,来稿的文字复制比(相似度或重复率)必须低于用稿标准,引用部分文字的要在参考文献中注明;署名和作者单位无误,未曾以任何形式用任何文种在国内外公开发表过;未一稿多投。 二、来稿除文中特别加以标注和致谢之外,不侵犯任何版权或损害第三方的任何其他权利。如果20天后未收到本刊的录用通知,可自行处理(双方另有约定的除外)。 三、来稿经审阅通过,编辑部会将修改意见反馈给您,您应在收到通知7天内提交修改稿。作者享有引用和复制该文的权利及著作权法的其它权利。 四、一般来说,4500字(电脑WORD统计,图表另计)以下的文章,不能说清问题,很难保证学术质量,本刊恕不受理。 五、论文格式及要素:标题、作者、工作单位全称(院系处室)、摘要、关键词、正文、注释、参考文献(遵从国家标准:GB\T7714-2005,点击查看参考文献格式示例)、作者简介(100字内)、联系方式(通信地址、邮编、电话、电子信箱)。 六、处理流程:(1) 通过电子邮件将稿件发到我刊唯一投稿信箱(2)我刊初审周期为2-3个工作日,请在投稿3天后查看您的邮箱,收阅我们的审稿回复或用稿通知;若30天内没有收到我们的回复,稿件可自行处理。(3)按用稿通知上的要求办理相关手续后,稿件将进入出版程序。(4) 杂志出刊后,我们会按照您提供的地址免费奉寄样刊。 七、凡向文教资料杂志社投稿者均被视为接受如下声明:(1)稿件必须是作者本人独立完成的,属原创作品(包括翻译),杜绝抄袭行为,严禁学术腐败现象,严格学术不端检测,如发现系抄袭作品并由此引起的一切责任均由作者本人承担,本刊不承担任何民事连带责任。(2)本刊发表的所有文章,除另有说明外,只代表作者本人的观点,不代表本刊观点。由此引发的任何纠纷和争议本刊不受任何牵连。(3)本刊拥有自主编辑权,但仅限于不违背作者原意的技术性调整。如必须进行重大改动的,编辑部有义务告知作者,或由作者授权编辑修改,或提出意见由作者自己修改。(4)作品在《文教资料》发表后,作者同意其电子版同时发布在文教资料杂志社官方网上。(5)作者同意将其拥有的对其论文的汇编权、翻译权、印刷版和电子版的复制权、网络传播权、发行权等权利在世界范围内无限期转让给《文教资料》杂志社。本刊在与国内外文献数据库或检索系统进行交流合作时,不再征询作者意见,并且不再支付稿酬。 九、特别欢迎用电子文档投稿,或邮寄编辑部,勿邮寄私人,以免延误稿件处理时间。

基于深度学习的花卉识别系统设计与实现①

来源:花卉 【在线投稿】 栏目:期刊导读 时间:2020-12-27
作者:网站采编
关键词:
摘要:目前人类在实现人工智能的道路上不断地探索和创新,发明出了很多方法来实现人工智能,机器学习就是其中的一种。机器学习可以说是让机器来模拟人类的学习行为,重组现有的知识

目前人类在实现人工智能的道路上不断地探索和创新,发明出了很多方法来实现人工智能,机器学习就是其中的一种。机器学习可以说是让机器来模拟人类的学习行为,重组现有的知识结构,通过现有的知识去学习新的知识。深度学习是机器学习的一种前沿发展。

此设计在Ubuntu上进行,编程语言是python,利用tensorflow这个谷歌框架,在Jupyter notebook上进行编写。

1 系统设计思路

系统是一个基于tensorflow这个谷歌深度学习框架的程序,这个 程序可以对指定的十种花卉进行分类和识别。核心思路是先设计一个卷积神经网络,这个神经网络的结构是两个卷积层、两个池化层、三个全连接层。将事先收集好的图片集根据种类打上不同的标签,将标签和图片这两个列表组合为一个输入数据队列,队列在分批次地送入神经网络中训练得到模型后,将模型保存在指定文件夹。再根据已有的模型来识别。

设计的核心就是卷积神经网络的设计,设计所用的卷积神经网络是由两个卷积层,两个池化层,三个全连接层组成。神经网络的结构如图1所示。

要想有一个神经网络来达到输入一张图片就能识别出这张图片的效果,就需要训练这个神经网络,训练神经网络这个过程的实质就是设置神经网络中的参数值,合理有效的神经网络才能实现识别。系统中使用监督学习的方式来训练这个神经网络。使用前向传播算法来获得预测值,再用损失函数表示计算预测值和正确答案之间的差距,使用反向传播算法和梯度下降算法来调整网络中的参数,训练神经网络模型的流程图如图2所示。

图1 卷积神经网络结构

2 系统各模块具体实现

在以下的论述中,将依次展现各个功能模块的具体设计及实现。

2.1 图片处理

2.1.1 图片的采集

要事先收集这10种花的大量图片,放在指定文件夹里,作为训练集,图片数量不能太少,因为花卉的图片属于像素较高,比较复杂的图片,如果训练用的图片不够多,训练出来的神经网络模型会因为训练不足而识别准确率较低。

2.1.2 创建标签分类函数

因为本课题中对神经网络的训练方式的监督学习的方式,所以所有训练的图片都是事先知道分类的,那么需要一个函数来给每一种图片打上对应的不同的标签,以此来表示分类的正确结果。

2.1.3 获取图片批次函数

将图片分批次地传入神经网络里训练,这种方式提高了内存利用率。需要定义一个get_batch()来一批批地获取数据,在分成一个个batch之前,先要将图片集和标签集都转换成tensorflow可识别的格式。

图2 训练神经网络流程图

图3 成功分类样例1

图4 成功分类样例2

2.2 卷积神经网络设计

2.2.1 卷积层

卷积核尺寸是3×3的,卷积核的深度是16,而偏差biases的深度也是16,而且被赋初试值为0.这个函数提供了一个十分方便的实现卷积层并且向前传播的方法,这个函数第一个输入是图片解码后的像素矩阵,的第二个输入是卷积层的权重weights,第三个输入是卷积核在不同维度上的步长,程序里的strides=[1,1,1,1]表示卷积核每次沿着x轴和沿着y轴挪动的时候挪动单位长度为1。在卷积核处理图片的时候,有的时候因为图片大小问题或者步数设置问题导致不可能将每个方向所有的部分都处理完,这时候可以选择是否对图片边缘进行补零处理,padding这个参数的设置就是选择是否进行对图片四周补零,当 padding=valid时不添加零,padding=same时添加零。

2.2.2 池化层

池化层的优点就是可以非常有效的缩小矩阵的尺寸,而且可以保留相对主要的特征,减少下一层要处理的参数。和卷积层有些类似,池化层的向前传播也是通过一个类似于卷积核这样的过滤器的结构完成的。目前实践中使用的最多的池化是最大池化和平均池化。和卷积层一样,池化层过滤器这些参数也要设置,例如是否用零填充、过滤器的尺寸为多少、过滤器步数为多少。

图5 成功分类样例3

卷积层conv2接着对上一个池化层作处理,卷积核的尺寸为3×3,深度为16,在这一层选择了使用全0补充。池化层2过滤器大小为3×3,深度为16,也选择了全0补充。

2.2.3 全连接层local3和local4

本设计的神经网络中有两个全连接层,全连接层的结点和前一层的所有结点都是相互连接的。

文章来源:《花卉》 网址: http://www.hhqks.cn/qikandaodu/2020/1227/1323.html



上一篇:新冠肺炎疫情对凌源花卉产业影响及解决对策
下一篇:虎丘“三花”的前世今生

花卉投稿 | 花卉编辑部| 花卉版面费 | 花卉论文发表 | 花卉最新目录
Copyright © 2018 《花卉》杂志社 版权所有
投稿电话: 投稿邮箱: